Abstract

To understand how hippocampal signals are processed by downstream neurons, we analyzed the relative timing between neuronal discharges in simultaneous recordings in the hippocampus and nucleus accumbens of rats performing in a plus maze. In all, 154 pairs of cells (composed of 65 hippocampal and 56 accumbens neurons) were examined during the 1 s period prior to reward delivery. Cross-correlation analyses over a +/- 300-ms window with 10-ms bins revealed that 108 pairs had at least one significant histogram bin (P < 0.01). The most frequently occurring peaks of hippocampal firing prior to accumbens discharges appeared at latencies from -30-0 ms, corresponding to published values of the latency of the hippocampal pathway to the nucleus accumbens. Other peaks appeared most often at latencies multiples of about 110 ms prior to and after this, corresponding to theta rhythmicity. Since firing synchronization can result from several types of connectivity patterns (such as common inputs), a group of 18 hippocampus-accumbens pairs was selected as those most likely to have monosynaptic connections. The criterion was the presence of at least one highly significant peak (P < 0.001) at latencies corresponding to field potentials evoked in the accumbens by hippocampal stimulation. A significant peak occurred on all four maze arms for only one of these cell pairs, indicating positional modulation for the others. In addition, behavior dependence of the synchrony between these nucleus accumbens and hippocampus neurons was examined by studying data in relation to three different synchronization points: reward box arrival, box departure, and arrival at the center of the maze. This indicates that the functional connectivity between hippocampal and accumbens neurons was stronger when the rat was near reward areas. Ten of the hippocampal neurons in these 18 cell pairs showed 9-Hz (theta) rhythmic activity in autocorrelation analyses. Of these 10 cells, cross-correlograms from eight hippocampal-accumbens pairs also showed theta rhythmicity. Overall, these results indicate that the synchrony between hippocampus and nucleus accumbens neurons is modulated by spatial position and behavior, and theta rhythm may play an important role for this synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.