Abstract

Control of deep-space spacecraft formation flying is investigated in this paper using the virtual structure approach and the − θ D suboptimal control technique. The circular restricted three-body problem with the Sun and the Earth as the two primaries is utilized as a framework for study and a two-satellite formation flying scheme is considered. The virtual structure is stationkept in a nominal orbit around the 2 L libration point. A maneuver mode of formation flying is then considered. Each spacecraft is required to maneuver to a new position and the formation line-of-sight is required to rotate to a desired orientation to acquire new science targets. During the rotation, the formation needs to be maintained and each spacecraft’s attitude must align with the rotating formation orientation. The basic strategy is used on a ‘Virtual structure’ approach. A nonlinear model is developed that describes the relative formation dynamics. This highly nonlinear position and attitude control problem is solved by employing a recently developed nonlinear control approach, called the -D technique. This method is based on solution to the Hamilton-JacobiBellman equation and yields a closed-form suboptimal feedback solution. The controller is designed such that the relative position error of the formation is maintained within one centimeter accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call