Abstract
In this article, beam learning based on position information (PI) about mobile station positions in the initial access (IA) of millimeter wave (mmWave) multiple-input–multiple-output (MIMO) cellular networks is investigated. The existing PI-based IA procedure cannot efficiently tackle the position inaccuracy and blockage or may cause a long IA delay because of the inefficient beam learning. Based on the sparse scattering of mmWave signals, the serving area is partitioned into smaller areas and the beams are learned for each small area. Moreover, the number of learned beams is restricted and fixed after learning. Thus, the impact of position inaccuracy and blockage can be mostly mitigated and the IA delay is short in each successful IA. The analysis shows the lower bound of the probability of miss detection. Additionally, the simulation results show that the proposed approach can achieve a reasonable IA delay and superior IA performance than other PI-based approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.