Abstract
Cylindric diagrams admit the structure of infinite $d$-complete posets with natural ordering. The purpose of this paper is to provide a realization of a cylindric diagram as a subset of an affine root system of type A via colored hook lengths and to present several characterizations of its poset structure. Furthermore, the set of order ideals of a cylindric diagram is described as a weak Bruhat interval of the affine Weyl group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.