Abstract

We develop the theory of poset pinball, a combinatorial game introduced by Harada-Tymoczko to study the equivariant cohomology ring of a GKM-compatible subspace X of a GKM space; Harada and Tymoczko also prove that, in certain circumstances, a successful outcome of Betti poset pinball yields a module basis for the equivariant cohomology ring of X. First we define the dimension pair algorithm, which yields a successful outcome of Betti poset pinball for any type A regular nilpotent Hessenberg and any type A nilpotent Springer variety, considered as GKM-compatible subspaces of the flag variety. The algorithm is motivated by a correspondence between Hessenberg affine cells and certain Schubert polynomials which we learned from Insko. Second, in a special case of regular nilpotent Hessenberg varieties, we prove that our pinball outcome is poset-upper-triangular, and hence the corresponding classes form a HS1*(pt)-module basis for the S1-equivariant cohomology ring of the Hessenberg variety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.