Abstract
Camera localization is a fundamental requirement in robotics and computer vision. This paper introduces a pose-to-image translation framework to tackle the camera localization problem. We present PoseGANs, a conditional generative adversarial networks (cGANs) based framework for the implementation of pose-to-image translation. PoseGANs feature a number of innovations including a distance metric based conditional discriminator to conduct camera localization and a pose estimation technique for generated camera images as a stronger constraint to improve camera localization performance. Compared with learning-based regression methods such as PoseNet, PoseGANs can achieve better performance with model sizes that are 70% smaller. In addition, PoseGANs introduce the view synthesis technique to establish the correspondence between the 2D images and the scene, i.e., given a pose, PoseGANs are able to synthesize its corresponding camera images. Furthermore, we demonstrate that PoseGANs differ in principle from structure-based localization and learning-based regressions for camera localization, and show that PoseGANs exploit the geometric structures to accomplish the camera localization task, and is therefore more stable than and superior to learning-based regressions which rely on local texture features instead. In addition to camera localization and view synthesis, we also demonstrate that PoseGANs can be successfully used for other interesting applications such as moving object elimination and frame interpolation in video sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.