Abstract

This paper proposes a pose robust human detection and identification method for sequences of stereo images using multiply-oriented 2D elliptical filters (MO2DEFs), which can detect and identify humans regardless of scale and pose. Four 2D elliptical filters with specific orientations are applied to a 2D spatial-depth histogram, and threshold values are used to detect humans. The human pose is then determined by finding the filter whose convolution result was maximal. Candidates are verified by either detecting the face or matching head-shoulder shapes. Human identification employs the human detection method for a sequence of input stereo images and identifies them as a registered human or a new human using the Bhattacharyya distance of the color histogram. Experimental results show that (1) the accuracy of pose angle estimation is about 88%, (2) human detection using the proposed method outperforms that of using the existing Object Oriented Scale Adaptive Filter (OOSAF) by 15–20%, especially in the case of posed humans, and (3) the human identification method has a nearly perfect accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.