Abstract
Parsing human into semantic parts is crucial to human-centric analysis. In this paper, we propose a human parsing pipeline that uses pose cues, e.g., estimates of human joint locations, to provide pose-guided segment proposals for semantic parts. These segment proposals are ranked using standard appearance cues, deep-learned semantic feature, and a novel pose feature called pose-context. Then these proposals are selected and assembled using an And-Or graph to output a parse of the person. The And-Or graph is able to deal with large human appearance variability due to pose, choice of clothing, etc. We evaluate our approach on the popular Penn-Fudan pedestrian parsing dataset, showing that it significantly outperforms the state of the art, and perform diagnostics to demonstrate the effectiveness of different stages of our pipeline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.