Abstract

In this paper, we propose an evolutionary correlation filtering approach for solving pose estimation in noncontinuous video sequences. The proposed algorithm computes the linear correlation between the input scene containing a target in an unknown environment and a bank of matched filters constructed from multiple views of the target and estimates of statistical parameters of the scene. An evolutionary approach for finding the optimal filter that produces the highest matching score in the correlator is implemented. The parameters of the filter bank evolve through generations to refine the quality of pose estimation. The obtained results demonstrate the robustness of the proposed algorithm in challenging image conditions such as noise, cluttered background, abrupt pose changes, and motion blur. The performance of the proposed algorithm yields high accuracy in terms of objective metrics for pose estimation in noncontinuous video sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.