Abstract

The objective of this study was to evaluate the effect of water-cement ratio and cement content on the hydraulic behavior of soil–cement–bentonite (SCB) and soil–bentonite (SB) mixtures permeated with water and diesel oil, to assist with the design of vertical cutoff walls constructed with those mixtures. The experimental program included unconfined compression tests, hydraulic conductivity tests and X-ray diffraction analysis. The test results indicated changes in hydraulic conductivity take place due to the variation of the water-cement ratio and permeant fluid. The hydraulic conductivity of the SB mixtures permeated with diesel oil was higher than the hydraulic conductivity of the same samples permeated with water. X-ray diffraction analyses suggest that this might be due to the decrease in double layer thickness and increase of seepage pore space imparted by diesel oil permeation. Conversely, Portland cement addition increased the hydraulic conductivity of the SCB specimens permeated with water, whereas subsequent diesel oil permeation reduced the hydraulic conductivity of the SCB specimens; this might be due to the relatively lower impact imparted by diesel permeation on the double layer characteristics of the bentonite stabilized with Portland cement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call