Abstract

Although deep learning is a very successful AI technology, many concerns have been raised about to what extent the decisions making process of deep neural networks can be trusted. Verifying of properties of neural networks such as adversarial robustness and network equivalence sheds light on the trustiness of such systems. We focus on an important family of deep neural networks, the Binarized Neural Networks (BNNs) that are useful in resourceconstrained environments, like embedded devices. We introduce our portfolio solver that is able to encode BNN properties for SAT, SMT, and MIP solvers and run them in parallel, in a portfolio setting. In the paper we propose all the corresponding encodings of different types of BNN layers as well as BNN properties into SAT, SMT, cardinality constrains, and pseudo-Boolean constraints. Our experimental results demonstrate that our solver is capable of verifying adversarial robustness of medium-sized BNNs in reasonable time and seems to scale for larger BNNs. We also report on experiments on network equivalence with promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.