Abstract

Abstract This paper studies a dynamic mean-variance portfolio selection problem with random liability in the affine interest rate environment, where the financial market consists of three assets: one risk-free asset, one risky asset and one zero-coupon bond. Assume that short rate is driven by affine interest rate model and liability process is described by the drifted Brownian motion, in addition, stock price dynamics is affected by interest rate dynamics. The investors expect to look for an optimal strategy to minimize the variance of the terminal surplus for a given expected terminal surplus. The efficient strategy and the efficient frontier are explicitly obtained by applying dynamic programming principle and Lagrange duality theorem. A numerical example is given to illustrate our results and some economic implications are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.