Abstract
Dynamic portfolio optimization has significantly benefited from a wider adoption of deep learning (DL). While existing research has focused on how DL can applied to solving the Hamilton–Jacobi–Bellman (HJB) equation, some very recent developments propose to forego the derivation of HJB in favor of empirical utility maximization over dynamic allocation strategies expressed through artificial neural networks. In addition to simplicity and transparency, this approach is universally applicable, as it is essentially agnostic about market dynamics. We apply it to optimal portfolio allocation between cash account and risky asset following Heston model. The results appear on par with theoretical ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.