Abstract

Based on the observation that the elasticity of variance of risky assets is randomly varying around a constant, we take an underlying asset model in which the averaged constant elasticity of variance is perturbed by a small fast fluctuating process and study the Merton type portfolio optimization problem using dynamic programming as well as asymptotic expansions. The Hamilton–Jacobi–Bellman equation for each of the power and exponential utility functions leads to an optimal trading strategy as a perturbation around the well known one. We reveal the impact of both the constant elasticity of variance upon the Merton investment optimal control under the Black–Scholes model and the stochastic elasticity of variance upon the investment optimal control under the constant elasticity of variance model. The concavity of the investment policy with respect to the excess return is characteristic of a market economy with the constant or stochastic elasticity of variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.