Abstract
This paper addresses itself to a portfolio optimization problem under nonconvex transaction costs and minimal transaction unit constraints. Associated with portfolio construction is a fee for purchasing assets. Unit transaction fee is larger when the amount of transaction is smaller. Hence the transaction cost is usually a concave function up to certain point. When the amount of transaction increases, the unit price of assets increases due to illiquidity/market impact effects. Hence the transaction cost becomes convex beyond certain bound. Therefore, the net expected return becomes a general d.c. function (difference of two convex functions). We will propose a branch-and-bound algorithm for the resulting d.c. maximization problem subject to a constraint on the level of risk measured in terms of the absolute deviation of the rate of return of a portfolio. Also, we will show that the minimal transaction unit constraints can be incorporated without excessively increasing the amount of computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.