Abstract
This paper uses simulation-based portfolio optimization to mitigate the left tail risk of the portfolio. The contribution is twofold. (i) We propose the Markov regime-switching GARCH model with multivariate normal tempered stable innovation (MRS-MNTS-GARCH) to accommodate fat tails, volatility clustering and regime switch. The volatility of each asset independently follows the regime-switch GARCH model, while the correlation of joint innovation of the GARCH models follows the Hidden Markov Model. (ii) We use tail risk measures, namely conditional value-at-risk (CVaR) and conditional drawdown-at-risk (CDaR), in the portfolio optimization. The optimization is performed with the sample paths simulated by the MRS-MNTS-GARCH model. We conduct an empirical study on the performance of optimal portfolios. Out-of-sample tests show that the optimal portfolios with tail measures outperform the optimal portfolio with standard deviation measure and the equally weighted portfolio in various performance measures. The out-of-sample performance of the optimal portfolios is also more robust to suboptimality on the efficient frontier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.