Abstract

Porter is a new system for protein secondary structure prediction in three classes. Porter relies on bidirectional recurrent neural networks with shortcut connections, accurate coding of input profiles obtained from multiple sequence alignments, second stage filtering by recurrent neural networks, incorporation of long range information and large-scale ensembles of predictors. Porter's accuracy, tested by rigorous 5-fold cross-validation on a large set of proteins, exceeds 79%, significantly above a copy of the state-of-the-art SSpro server, better than any system published to date. Porter is available as a public web server at http://distill.ucd.ie/porter/ gianluca.pollastri@ucd.ie.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.