Abstract

Segmenting portal vein (PV) and hepatic vein (HV) from magnetic resonance imaging (MRI) scans is important for hepatic tumor surgery. Compared with single phase-based methods, multiple phases-based methods have better scalability in distinguishing HV and PV by exploiting multi-phase information. However, these methods just coarsely extract HV and PV from different phase images. In this paper, we propose a unified framework to automatically and robustly segment 3D HV and PV from multi-phase MR images, which considers both the change and appearance caused by the vascular flow event to improve segmentation performance. Firstly, inspired by change detection, flow-guided change detection (FGCD) is designed to detect the changed voxels related to hepatic venous flow by generating hepatic venous phase map and clustering the map. The FGCD uniformly deals with HV and PV clustering by the proposed shared clustering, thus making the appearance correlated with portal venous flow robustly delineate without increasing framework complexity. Then, to refine vascular segmentation results produced by both HV and PV clustering, interclass decision making (IDM) is proposed by combining the overlapping region discrimination and neighborhood direction consistency. Finally, our framework is evaluated on multi-phase clinical MR images of the public dataset (TCGA) and local hospital dataset. The quantitative and qualitative evaluations show that our framework outperforms the existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.