Abstract

The present study was undertaken to study the metabolism of short-chain fatty acids (SCFA) by the reticulo-ruminal epithelium and the portal-drained viscera (PDV) under in vivo conditions with no interference from the metabolism of the rumen microbes. The technique of temporary isolation of the reticulo-rumen was applied to wethers implanted with catheters in a mesenteric artery, the hepatic portal vein and the right ruminal vein. Portal blood flow was measured by downstream dilution of p-aminohippuric acid; the PDV uptake of arterial acetate, as well as the whole-body irreversible loss rate (ILR) of acetate, was estimated by [2-(13)C]acetate infusion into the right ruminal vein. The sheep were maintained with a bicarbonate-buffered solution of SCFA in the reticulo-rumen along with continuous intraruminal infusion of SCFA for 4 h. The portal appearance of SCFA of non-reticulo-ruminal origin was estimated before and after the infusion protocol. Of the acetate absorbed by the sheep, 89 (SE 5), 109 (SE 7) and 101 (SE 7)% was recovered as portal net appearance of acetate, portal net appearance of acetate corrected for PDV uptake of arterial acetate and increase in the ILR of acetate respectively. Of the propionate, isobutyrate, butyrate, isovalerate and valerate absorbed by the sheep, 95 (SE 7), 102 (SE 9), 23 (SE 3), 48 (SE 5) and 32 (SE 4)% respectively was recovered as portal net appearance. In contrast to current concepts, the present study showed that the reticulo-ruminal epithelium metabolizes none (or only a small proportion) of the acetate and propionate absorbed from the rumen. This observation could lead to the more efficient use of results obtained with multi-catheterized animals to quantify the net metabolite output of the rumen microbes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call