Abstract

A low-cost kit of stick-on wireless sensors that transmit data indicating whenever various objects are being touched or used might aid ubiquitous computing research efforts on rapid prototyping, context-aware computing,and ultra-dense object sensing, among others. Ideally, the sensors would besmall, easy-to-install, and affordable. The sensors would reliably recognize when specific objects are manipulated, despite vibrations produced by the usage of nearby objects and environmental noise. Finally, the sensors would operate continuously for several months, or longer. In this paper, we discuss the challenges and practical aspects associated with creating such "object usage" sensors. We describe the existing technologies used to recognize object usage and then present the design and evaluation of a new stick-on, wireless object usage sensor. The device uses (1) a simple classification rule tuned to differentiate real object usage from adjacent vibrations and noise in real-time based on data collected from a real home, and (2) two complimentary sensors to obtain good battery performance. Results of testing 168 of the sensors in an instrumented home for one month of normal usage are reported as well as results from a 4-hour session of a person busily cooking and cleaning in the home, where every object usage interaction was annotated and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.