Abstract

Leishmaniasis, caused by the parasite of the genus Leishmania, is a neglected tropical disease which is endemic in more than 60 countries. In South-East Asia, Brazil, and East Africa, it mainly occurs as kala-azar (visceral leishmaniasis, VL), and subsequently as post kala-azar dermal leishmaniasis (PKDL) in a smaller portion of cases. As stated per WHO roadmap, accessibility to accurate diagnostic methods is an essential step to achieve elimination. This study aimed to test the accuracy of a portable minoo device, a small battery-driven, multi-use fluorimeter operating with isothermal technology for molecular diagnosis of VL and PKDL. Fluorescence data measured by the device within 20min are reported back to the mobile application (or app) via Bluetooth and onward via the internet to a backend. This allows anonymous analysis and storage of the test data. The test result is immediately returned to the app displaying it to the user. The limit of detection was 11.2 genome copies (95% CI) as determined by screening a tenfold dilution range of whole Leishmania donovani genomes using isothermal recombinase polymerase amplification (RPA). Pathogens considered for differential diagnosis were tested and no cross-reactivity was observed. For its diagnostic performance, DNA extracted from 170 VL and PKDL cases, comprising peripheral blood samples (VL, n = 96) and skin biopsies (PKDL, n = 74) from India (n = 108) and Bangladesh (n = 62), was screened. Clinical sensitivity and specificity were 88% and 91%, respectively. Minoo devices can offer a convenient, cheaper alternative to other molecular diagnostics. Its easy handling makes it ideal for use in low-resource settings to identify parasite burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call