Abstract

Two Python modules are presented: pyOpenCL, a library that enables programmers to write Open Common Language (OpenCL) code within Python programs; and ocl, a Python-to-C converter that lets developers write OpenCL kernels using the Python syntax. Like CUDA, OpenCL is designed to run on multicore GPUs. OpenCL code can also run on other architectures, including ordinary CPUs and mobile devices, always taking advantage of their multicore capabilities. Combining Python, numerical Python (numPy), pyOpenCL, and ocl creates a powerful framework for developing efficient parallel programs that work on modern heterogeneous architectures. Open Common Language (OpenCL) runs on multicore GPUs, as well as other architectures including ordinary CPUs and mobile devices. Combining OpenCL with numerical Python (numPy) and a new module - ocl, a Python-to-C converter that lets developers use Python to write OpenCL kernels - creates a powerful framework for developing efficient parallel programs for modern heterogeneous architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.