Abstract

Projecting a high-dimensional dataset onto a lower dimensional space can improve the efficiency of knowledge discovery and facilitate real-time data analysis. One technique for dimension reduction, weighted multi-dimensional scaling (WMDS), approximately preserves pairwise weighted distances during the transformation; but its O(f(n)d) algorithm impedes real-time performance on large datasets. Thus, we present CLARET, our fast and portable parallel WMDS tool that combines algorithmic concepts adapted and extended from the stochastic force-based MDS (SF-MDS) and Glimmer. To further improve Claret's performance for real-time data analysis, we propose a preprocessing step that computes approximate weighted Euclidean distances by combining a novel data mapping called stretching and Johnson Lindestrauss' lemma in O(log d) time in place of the original O(d) time. This preprocessing step reduces the complexity of WMDS from O(f(n)d) to O(f(n) log d), which for large d is a significant computational gain. Finally, we present a case study of Claret by integrating it into an interactive visualization tool called V2PI to facilitate real-time analytics. To ensure the quality of the projections, we propose a geometric shape matching-based alignment process and a quality metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.