Abstract

Tigecycline (TGC) is a novel potent antibiotic with recently proven anticancer activity against leukemia, glioma, and lung cancer. In-line TGC potentiometric sensors are fabricated for monitoring TGC in its pure form, pharmaceutical formulation, presence of its degradation products, and spiked human plasma. In-line sensors act as greener, portable, and economical alternatives to the classical off-line separation-based techniques. Classical and advanced liquid-contact (LC) and solid-contact (SC) sensors were fabricated, where the best performance was observed with the modified SC sensor (sensor VI) with potassium tetrakis (4-chlorophenyl) borate as ionic exchanger, β-cyclodextrin ionophore and cobalt oxide nanoparticles, showing a Nernstian response of 30 mV decade−1 in the linear range of 10−2–10−6 M. Statistical comparison was carried out for the results obtained from proposed SC sensors and the official method on TGC pure form. Additionally, method greenness was evaluated using a semi-quantitative analytical eco-scale, scoring approximately 95 points, which was the highest greenness achievement score when compared to the proposed LC sensors or British Pharmacopeial chromatographic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call