Abstract

Near-infrared (NIR) spectroscopy is a widely used technique for determining the composition of textile fibers. This paper analyzes the possibility of using low-cost portable NIR sensors based on InGaAs PIN photodiode array detectors to acquire the NIR spectra of textile samples. The NIR spectra are then processed by applying a sequential application of multivariate statistical methods (principal component analysis, canonical variate analysis, and the k-nearest neighbor classifier) to classify the textile samples based on their composition. This paper tries to solve a real problem faced by a knitwear manufacturer, which arose because different pieces of the same garment were made with “identical” acrylic yarns from two suppliers. The sweaters had a composition of 50% acrylic, 45% wool, and 5% viscose. The problem occurred after the garments were dyed, where different shades were observed due to the different origins of the acrylic yarns. This is a challenging real-world problem for two reasons. First, there is the need to differentiate between acrylic yarns of different origins, which experts say cannot be visually distinguished before garments are dyed. Second, measurements are made in the field using portable NIR sensors rather than in a controlled laboratory using sophisticated and expensive benchtop NIR spectrometers. The experimental results obtained with the portable sensors achieved a classification accuracy of 95%, slightly lower than the 100% obtained with the high-performance laboratory benchtop NIR spectrometer. The results presented in this paper show that portable NIR sensors combined with appropriate multivariate statistical classification methods can be effectively used for on-site textile quality control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call