Abstract

Anastomosis of the microvessels requires high-level skills and extensive basic training. This study was performed to introduce and evaluate an inexpensive laboratory device as a training aid. Micro-tubes of 0.8 mm inner diameter and 0.5/0.8 mm wall thickness mimicking human vein/artery were printed from a silicon-containing hydrogel using three-dimensional printing technology. The hydrogel components are optimized to render the printed tubes biomechanical features resembling the blood vessels of a living organism. These artificial vessels were connected to a pump for fluid flow, simulating the blood circulation. Forty medical interns were assigned to two equal groups. The 20 interns in group A practiced anastomosis using the training aid for a total of 10 hours over 5 days. The 20 interns in group B practiced anastomosis using the traditional gum pieces and silicone tubes. Then, all interns performed anastomosis on rat carotid arteries, and their performance was scored by a team of five experienced maxillofacial surgeons. The average success score and time required for anastomosis were compared between the two groups. The mean success score of group A was significantly higher than that of group B (0.83 ± 0.12 vs 0.64 ± 0.10, P < 0.001). The mean anastomosis time of group A was significantly shorter than that of group B (10.2 ± 1.1 vs 17.2 ± 1.4 minutes, P < 0.001). This training device for vessel microanastomosis is an inexpensive, practical, and effective tool for use in laboratories and also reduces the use of animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.