Abstract

2,4,6-trichloroanisole (TCA) is mainly responsible for cork taint in wine, which causes significant economic losses; therefore, the wine and cork industries demand an immediate, economic, noninvasive and on-the-spot solution. In this work, we present a novel prototype of an electronic nose (e-nose) using an array of digital and analog metal-oxide gas sensors with a total of 31 signals, capable of detecting TCA, and classifying cork samples with low TCA concentrations (≤15.1 ng/L). The results show that the device responds to low concentrations of TCA in laboratory conditions. It also differentiates among the inner and outer layers of cork bark (81.5% success) and distinguishes among six different samples of granulated cork (83.3% success). Finally, the device can predict the concentration of a new sample within a ±10% error margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.