Abstract

Paper chip as a representative microfluidic device has been mushroomed for rapid identification of contaminants in agro-food. However, the sensitivity and accuracy have still been challenged by inevitable background noise or interference in food matrix. Herein, we designed and fabricated a dual-mode paper chip (DPC) by assembling a patterned paper electrode with a platinum nanoparticles-treated colorimetric region through a flow channel. Dual-mode outputs were guided by an aptamer-gated UiO-66-NH2 metal-organic frameworks (MOFs). UiO-66-NH2 loaded with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) was controlled by a switch comprised of CdS quantum dots-aptamer. Aflatoxin B1 (AFB1, a kind of carcinogenic mycotoxin) target came and induced TMB release, triggering colorimetric and ECL signals on DPC, ultra-high sensitivity with a detection limit of 7.8 fg/mL was realized. The practicability of the DPC was also confirmed by spiking AFB1 in real corn samples. This portable paper-based device provides an ideal rapid detection platform tailored for diverse food contaminants analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.