Abstract

Having the least lenses, the significant feature of the singlet imaging system, helps the development of the portable and cost-effective microscopes. A novel method of monochromatic/color singlet microscopy, which is combined with only one aspheric lens and deep learning computational imaging technology, is proposed in this article. The designed singlet aspheric lens is an approximate linear signal system, which means modulation-transfer-function curves on all field-of-views (5 mm diagonally) are almost coincident with each other. The purpose of the designed linear signal system is to further improve the resolution of our microscope by using deep learning algorithm. As a proof of concept, we designed a singlet microscopy based on our method, which weighs only 400 g. The experimental data and results of the sample USAF-1951 target and bio-sample (the Equisetum-arvense Strobile L.S), prove that the performance of the proposed singlet microscope is competitive to a commercial microscope with the 4X/NA0.1 objective lens. We believe that our idea and method would guide to design more cost-effective and powerful singlet imaging system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.