Abstract

Easy access to clean water is essential to functioning and development of modern society. However, it remains arduous to develop energy-efficient, facile, and portable water treatment systems for point-of-use (POU) applications, which is particularly imperative for the safety and resilience of society during extreme weather and critical situations. Here, we propose and validate a meritorious working scheme for water disinfection via directly capturing and removing pathogen cells from bulk water using strategically designed three-dimensional (3D) porous dendritic graphite foams (PDGFs) in a high-frequency AC field. The prototype, integrated in a 3D-printed portable water-purification module, can reproducibly remove 99.997% E. coli bacteria in bulk water at a few voltages with among the lowest energy consumption at 435.5 J·L-1. The PDGFs, costing $1.47 per piece, can robustly operate at least 20 times for more than 8 h in total without functional degradation. Furthermore, we successfully unravel the involved disinfection mechanism with one-dimensional Brownian dynamics simulation. The system is practically applied that brings natural water in Waller Creek at UT Austin to the safe drinking level. This research, including the working mechanism based on dendritically porous graphite and the design scheme, could inspire a future device paradigm for POU water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call