Abstract

The slow light sensor techniques have been applied to bio-related detection in the past decades. However, similar testing-systems are too large to carry to a remote area for diagnosis or point-of-care testing. This study demonstrated a fully automatic portable biosensing system based on the microring resonator. An optical-fiber array mounted on a controller based micro-positioning system, which can be interfaced with MATLAB to locate a tentative position for light source and waveguide coupling alignment. Chip adapter and microfluidic channel could be packaged as a product such that it is cheap to be manufactured and can be disposed of after every test conducted. Thus, the platform can be more easily operated via an ordinary user without expertise in photonics. It is designed based on conventional optical communication wavelength range. The C-band superluminescent-light-emitting-diode light source couples in/out the microring sensor to obtain quasi-TE mode by grating coupler techniques. For keeping a stable chemical binding reaction, the cost-effective microfluidic pump was developed to offer a specific flow rate of 20 μL/min by using a servo-motor, an Arduino board, and a motor driver. The subwavelength grating metamaterial ring resonator shows highly sensitive sensing performance via surface index changes due to biomarker adhered on the sensor. The real-time peak-shift monitoring shows 10μg/mL streptavidin detection of limit based on the biotin-streptavidin binding reaction. Through the different specific receptors immobilized on the sensor surface, the system can be utilized on the open applications such as heavy metal detection, gas sensing, virus examination, and cancer marker diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.