Abstract
Pesticide residues have raised serious public concern towards agriculture, environment and food safety. Recently, metal-organic frameworks (MOFs) have been employed as promising recognition and signal generation elements in sensors for pesticide detection. However, the general format of tiny particles with poor dispersity brings obstacles to detection operation and the improvement of sensing performance. Here, we report a sensor based on porous MOFs hybrid sponge for fluorescent-visible detection of methyl parathion. Benefiting from the intermediate of adhesive and porous fibrin film, MOFs are loaded with good dispersion and accessibility, thereby endowing the sensor with a rapid response time of 10-min, a wide linear detection range of 50–2500 μg L-1, and a low limit of detection of 4.95 μg L-1. Moreover, the hybrid sensor presented superior durability and anti-interference ability to the detection in complex conditions, including organic solvents, acidic solution, high temperature, and even chemical interferences. This hybrid not only provides a new construction strategy for a nanomaterial-based sensor, but also permits a portable and durable route for the detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.