Abstract

In this paper, we consider memristors, meminductors, and memcapacitors and their properties as port-Hamiltonian systems. The port-Hamiltonian formalism naturally arises from network modeling of physical systems in a variety of domains. Exposing the relation between the energy storage, dissipation, and interconnection structure, this framework underscores the physics of the system. One of the strong aspects of the port-Hamiltonian formalism is that a power-preserving interconnection between port-Hamiltonian systems results in another port-Hamiltonian system with composite energy, dissipation, and interconnection structure. This feature can advantageously be used to model, analyze, and simulate networks consisting of complex interconnections of both conventional and memory circuit elements. Furthermore, the port-Hamiltonian formalism naturally extends the fundamental properties of the memory elements beyond the realm of electrical circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.