Abstract

Structural analogues of chloramphenicol (CAP) cause mechanism-based inactivation of rat liver cytochrome P-450 (P450) either via protein acylation or destruction of the heme prosthetic group. The goal of the present work was to determine whether CAP analogues that cause loss of the P450 heme moiety also cause porphyrin accumulation in chick embryo liver cell culture. The porphyrin profiles produced by exposure of cells to CAP analogues (160 microM) were determined by high-performance liquid chromatography with fluorescence detection. Of three CAP analogues that do not cause loss of the heme moiety of rat liver P450IIB1, two dichloroacetamides were not porphyrinogenic. The third compound, a chlorofluoroacetamide, caused porphyrin accumulation. This result may be due to the presence of P450 isozymes in chick embryo hepatocytes, distinct from rat liver P450IIB1, that are susceptible to destruction by this analogue. Of four CAP analogues that inactivate rat liver P450IIB1 with concomitant heme loss, a dichloroacetamide and two chlorofluoroacetamides caused porphyrin accumulation. The remaining compound, a monochloroacetamide, was not porphyrinogenic, perhaps because the P450 apoprotein cannot be reconstituted with fresh heme drawn from the regulatory "free heme pool" following inactivation by this analogue. Alternatively, there may be no P450 isozyme in chick embryo liver cell culture that is susceptible to inactivation by this compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.