Abstract

Understanding and controlling multicomponent co-assembly is of primary importance in different fields, such as materials fabrication, pharmaceutical polymorphism, and supramolecular polymerization, but these aspects have been a long-standing challenge. Herein, we discover that liquid-liquid phase separation (LLPS) into ion-cluster-rich and ion-cluster-poor liquid phases is the first step prior to co-assembly nucleation based on a model system of water-soluble porphyrin and ionic liquids. The LLPS-formed droplets serve as the nucleation precursors, which determine the resulting structures and properties of co-assemblies. Co-assembly polymorphism and tunable supramolecular phase transition behaviors can be achieved by regulating the intermolecular interactions at the LLPS stage. These findings elucidate the key role of LLPS in multicomponent co-assembly evolution and enable it to be an effective strategy to control co-assembly polymorphism as well as supramolecular phase transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call