Abstract

In Saccharomyces cerevisiae, as in all eukaryotic organisms, δ-aminolevulinic acid (ALA) is a precursor of porphyrin biosynthesis, a very finely regulated pathway. ALA enters yeast cells through the γ-aminobutyric acid (GABA) permease Uga4. The incorporation of a metabolite into the cells may be a limiting step for its intracellular metabolization. To determine the relationship between ALA transport and ALA metabolization, ALA incorporation was measured in yeast mutant strains deficient in the δ-aminolevulinic acid-synthase, uroporphyrinogen III decarboxylase, and ferrochelatase, three enzymes involved in porphyrin biosynthesis. Results presented here showed that neither intracellular ALA nor uroporphyrin or protoporphyrin regulates ALA incorporation, indicating that ALA uptake and its subsequent metabolization are not related to each other. Thus a key metabolite as it is, ALA does not have a transport system regulated according to its role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.