Abstract

Tetrapyrrolic systems largely inspired by nature have attracted much attention in organic electronics and biomedical applications owing to their planar structure and extended [Formula: see text]-conjugated double bonds. As a result, delocalization of [Formula: see text]-electron cloud leads the excellent optical absorption and fluorescent properties. Nonetheless, the utilization of non-covalent interactions result in the self-assembled nanostructures providing applications in bioimaging and electronics. In this review, it is demonstrated that the recent reports on the self-assembly in tetrapyrrolic systems via supramolecular interactions lead to well-defined nanoarchitectures. Moreover, the importance of porphyrin based derivatives in nanoelectronics and chemotherapeutic applications is reported. Therefore, the inclination of tetrapyrroles towards the design and development of novel supramolecular nanostructures are considered the hallmark for nanorobotics, shape memory polymers and bionic arms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call