Abstract
The reduction of soluble U(VI) to insoluble U(IV) precipitates by visible light is an environmentally friendly and highly effective strategy to remove uranium from uranium-containing radioactive wastewater. Herein, a porous hydrogen-bonded organic framework (HOF) of UPC-H4a was self-assembled by intermolecular hydrogen bonds of 5,10,15,20-tetra(4-(2,4-diaminotriazine)phenyl) porphyrin to remove U(VI) from aqueous solution. UPC-H4a has high crystallinity with permanent porosity, excellent photocatalytic property, good chemical stability, and strong photocatalytic reducibility. The experiments showed that UPC-H4a removed 98.18% of U(VI) after illumination for 120 min, with high selectivity, strong ion interference resistance, and good reusability. A real low-level radioactive wastewater was employed to estimate the potential of UPC-H4a for practical application and its removal rate can reach 66.14% in the presence of redox competing metal ions, exhibiting great potential for practical application. The DFT calculations and EPR spectra revealed that a more negative electrostatic potential of DAT-porphyrin and the formed intermolecular hydrogen bonds in UPC-H4a can facilitate the participation of photogenerated electrons in the O2/∙O2– reaction, and the radical of ∙O2– was proved to be the critical participant in U(VI) photoreduction. The discovery of UPC-H4a in this work will help to develop more potential applications of HOFs as photocatalysts in radioactive wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.