Abstract

Porphyrin-linked covalent organic polymers (COPs) provide a reliable photocatalytic platform, while photodynamic inactivation (PDI) induced by reliable porphyrin-based COPs is considered to be an effective method to resist microbial contamination. Herein, three tunable porphyrin-based covalent organic polymers (H2-Por-COPs, OH-Por-COPs, and Zn-Por-COPs) are designed and employed for the PDI of Staphylococcus aureus and Escherichia coli under visible light illumination. Interestingly, singlet oxygen (1O2) generation by the Por-COPs can be manipulated via intramolecular regulation with the order Zn-Por-COP > OH-Por-COP > H2-Por-COP. With rationally tune, the Zn-Por-COP demonstrated remarkable antibacterial activity against Staphylococcus aureus (kill percentage 99.65 % ± 0.24 %) and Escherichia coli (kill percentage 97.25 % ± 1.78 %) in only 15 min under visible-light irradiation. Density functional theory (DFT) calculations and photophysical tests showed that the presence of electron-donating -OH groups on the aromatic linkers and Zn2+ ions in porphyrin units narrowed the HOMO-LUMO gap, enhancing both light absorption, intersystem crossing (ISC) and 1O2 generation for more efficient bacteria inactivation. This work can be applied to efficiently screen suitable photosensitizers and provides a rational regulatory strategy for PDI of pathogenic bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call