Abstract

Photodynamic therapy (PDT) is a non-invasive treatment method that has garnered significant attention in recent years. Nanoparticle-based drug delivery systems can achieve targeted drug release, thereby significantly reducing side effects and enhancing therapeutic efficacy. In this study, a covalent organic framework (COF) with an approximately spherical structure connected by azo bonds was synthesized. The synthesized COF was utilized as a hypoxia-responsive carrier for doxorubicin (DOX) drug delivery and was modified with hyaluronic acid (HA). DOX@COF@HA exhibited a reactive release under hypoxic conditions. Under normal oxygen conditions, the release of DOX was 16.9 %, increasing to 60.2 % with the addition of sodium hydrosulfite. In vitro experiments revealed that the group combining photodynamic therapy with chemotherapy exhibited the lowest survival rates for 4T1 and MHCC97-L cells. In vivo experiments further validated the effectiveness of combination therapy, resulting in a tumor volume of only 33 mm3 after treatment, with no significant change in mouse weight during the treatment period. DOX@COF@HA nanoplatforms exhibit substantial potential in tumor treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.