Abstract
In the present paper, a new cyclodextrin/porphyrin supramolecular sensitizer for zinc ion has been proposed based on the porphyrin dual fluorescence emission ratio. In aqueous solution, meso-tetraphenylporphyrin shows weak fluorescence, while in the presence of alkylated beta-cyclodextrin, it exhibits significant fluorescence enhancement by forming a cyclodextrin/porphyrin inclusion complex. Furthermore, the formation of a supramolecular complex causes a remarkable increase of the porphyrin metalation rate following the porphyrin fluorescence emission changes at two different emission wavelengths. The fluorescence emission of tetraphenylporphyrin at 656-nm bands decreases while that at 606 nm increases upon zinc ion interaction. Thus, the inclusion complex can behave as a ratiometric fluorescent sensor. Theoretically derivative equations for fluorescent ratiometry have been proposed for the first time. The feasibility of the proposed method is demonstrated by the performance of fluorometric detection of zinc ion. With the optimum conditions described, zinc ion in aqueous solution can be determined from 5.0 x 10(-7) to 2.5 x 10(-4) M. As the porphyrin electronic absorption and fluorescence emission are located in the visible range, and the fluorescence changes upon zinc ion interaction show high selectivity over biologically relevant cations, the inclusion complex could be used for biomedical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.