Abstract

Biofuranic compounds, typically derived from C5 and C6 carbohydrates, have been extensively studied as promising alternatives to chemicals based on fossil resources. The present work reports the simple assembly of biobased 2,5-furandicarboxylic acid (FDCA) with different metal ions to prepare a range of metal-FDCA hybrids under hydrothermal conditions. The hybrid materials were demonstrated to have porous structure and acid-base bifunctionality. Zr-FDCA-T, in particular, showed a microspheric structure, high thermostability (ca. 400 °C), average pore diameters of approximately 4.7 nm, large density, moderate strength of Lewis-base/acid centers (ca. 1.4 mmol g-1 ), and a small number of Brønsted-acid sites. This material afforded almost quantitative yields of biofuranic alcohols from the corresponding aldehydes under mild conditions through catalytic transfer hydrogenation (CTH). Isotopic 1 H NMR spectroscopy and kinetic studies verified that direct hydride transfer was the dominant pathway and rate-determining step of the CTH. Importantly, the Zr-FDCA-T microspheres could be recycled with no decrease in catalytic performance and little leaching of active sites. Moreover, good yields of C5 (i.e., furfural) or C4 products [i.e., maleic acid and 2(5H)-furanone] could be obtained from furfuryl alcohol without oxidation of the furan ring over these metal-FDCA hybrids. The content and ratio of Lewis-acid/base sites were demonstrated to dominantly affect the catalytic performance of these redox reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.