Abstract

In this work, a facile route using a simple solvothermal reaction and sequential heat treatment process to prepare porous Y2O3 microcubes is presented. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), thermogravimetric analysis (TG), and differential thermal analysis (DTA). The thermal decomposition process of the Y2O3 precursor was investigated. SEM results demonstrated that the as-prepared porous Y2O3 microcubes were with an average width of about 20 μm and thickness of about 8 μm. It was found that the morphology of the Y2O3 precursor could be readily tuned by varying the molar ratio of S2O82− to Y3+. Y2O3:Eu3+ (6.6%) microcubes were also prepared and their photoluminescence properties were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call