Abstract

In this work, we theoretically and experimentally demonstrate a highly sensitive porous silicon membrane waveguide biosensor in the Kretschmann configuration, and show how the cladding material directly impacts the waveguide sensor detection sensitivity and resonance width. Dielectric and metal-clad porous waveguides in the Kretchmann configuration have the potential to achieve significantly enhanced performance for small molecule detection compared to planar waveguide and surface plasmon resonance sensors due to increased surface area and strong field confinement in the porous waveguide layer. First order perturbation theory calculations predict that the quality factors of polymer-cladded porous silicon waveguides with porous silicon losses less than ~500 dB/cm are at least two times larger than the quality factors of gold-cladded porous silicon waveguides and traditional surface plasmon resonance sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.