Abstract

Vanadium trioxide materials have attracted great interest due to their low cost and high theoretical lithium storage capacity. In this work, porous V2O3@C composites were prepared via a NaCl template-assisted freeze-drying strategy. Benefiting from the unique three-dimensional porous carbon-based structure, the V2O3@C composite anode exhibits a high-rate pseudocapacitive behavior. A lithium-ion capacitor (LIC) based on this V2O3@C composite anode and a commercial AC cathode was constructed. Results show that the as-constructed device exhibits high energy density, high power density as well as long cycle stability, indicating the great promise of our porous V2O3@C composites for the high-performance LICs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.