Abstract

We report a facile method for preparing porous structured TiO2 materials by templating from Pickering high-internal phase emulsions (HIPEs). A Pickering HIPE with an internal phase of up to 80 vol %, stabilized by poly(N-isopropylacrylamide)-based microgels and TiO2 solid nanoparticles, was first formulated and employed as a template to prepare the porous TiO2 materials with an interconnected structure. The resultant materials were characterized by scanning electron microscopy, X-ray diffraction, and mercury intrusion. Our results showed that the parent emulsion droplets promoted the formation of macropores and interconnecting throats with sizes of ~50 and ~10 μm, respectively, while the interfacially adsorbed microgel stabilizers drove the formation of smaller pores (~100 nm) throughout the macroporous walls after drying and sintering. The interconnected structured network with the bimodal pores could be well preserved after calcinations at 800 °C. In addition, the photocatalytic activity of the fabricated TiO2 was evaluated by measuring the photodegradation of Rhodamine B in water. Our results revealed that the fabricated TiO2 materials are good photocatalysts, showing enhanced activity and stability in photodegrading organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.