Abstract

Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) has become an attractive complementary approach to matrix-assisted laser desorption/ionization (MALDI) MS. SALDI MS has great potential for the detection of small molecules because of the absence of applied matrix. In this work, a functionalized porous TiO2 film immobilized with gold nanoparticles (AuNPs-FPTDF) was prepared to enhance SALDI MS performance. The porous TiO2 films were prepared by the facile sol-gel method and chemically functionalized for dense loading of AuNPs. The prepared AuNPs-FPTDF showed superior performance in the detection and imaging of small molecules in dual-polarity modes, with high detection sensitivity in the low pmol range, good repeatability, and low background noise compared to common organic MALDI matrixes. Its usage efficiently enhanced SALDI MS detection of various small molecules, such as amino acids and neurotransmitters, fatty acids, saccharides, alkaloids, and flavonoids, as compared with α-cyano-4-hydroxycinnamic acid, 9-aminoacridine, and the three precursor substrates of AuNPs-FPTDF. In addition, the blood glucose level in rats was successfully determined from a linearity concentration range of 0.5-9 mM, as well as other biomarkers in rat serum with SALDI MS. More importantly, the spatial distribution of metabolites from the intact flowers of the medicinal plant Catharanthus roseus was explored by using the AuNPs-FPTDF as an imprint SALDI MS substrate in dual-polarity modes. These results demonstrate wide applications and superior performances of the AuNPs-FPTDF as a multifunctional SALDI surface with enhanced detection sensitivity and imaging capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call