Abstract

An attempt has been made to bridge the material gap, existing between ideal single crystals and real-world powder nanocatalyst employed in surface science and heterogeneous catalysis, respectively. Simple wet chemical method (sol–gel and spin-coating deposition) has been applied to make continuous Ce1 − xZrxO2 (x = 0–1) (CZ) thin films with uniform thickness (~40 nm) and smooth surface characteristics. Uniform thickness and surface smoothness of the films over a large area was supported by a variety of measurements. Molecular beam (MB) studies of O2 adsorption on CZ surfaces reveals the oxygen storage capacity (OSC), and sticking coefficient increases from 400 to 800 K. Porous nature of Ce-rich CZ compositions enhances O2 adsorption and OSC, predominantly due to O-diffusion and redox nature, even at 400 K. A good correlation exists between MB measurements made on CZ films for oxygen adsorption, and OSC, and ambient pressure CO oxidation on powder form of CZ; this demonstrates the large potential to bridge the material gap. CZ was particularly chosen as a model system for the present studies, since it has been well-studied and a correlation between surface science properties made on thin films and catalysis on powder CZ materials could be a litmus test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.