Abstract

Self-assembly processes and subsequent photo-cross-linking were used to generate cross-linked, ordered microporous structures on the surfaces of well defined four-arm star-shaped poly(D,L-lactide) (PDLLA) thin films. The four-arm star-shaped PDLLAs were synthesized using an ethoxylated pentaerythritol initiator. Solutions of the PDLLAs were cast in a humid environment, and upon solvent evaporation, ordered honeycomb structures (or breath figures) were obtained. Correlations between molar mass, polymer solution viscosity, and pore dimensions were established. The average pore dimension decreased with increasing polymer solution concentration, and a linear relationship was observed between relative humidity and average pore dimensions. Highly ordered microporous structures were also developed on four-arm star-shaped methacrylate-modified PDLLA (PDLLA-UM) thin films. Subsequent photo-cross-linking resulted in more stable PDLLA porous films. The photo-cross-linked films were insoluble, and the honeycomb structures were retained despite solvent exposure. Free-standing, structured PDLLA-UM thin films were obtained upon drying for 24 h. Ordered microporous films based on biocompatible and biodegradable polymers, such as PDLLA, offer potential applications in biosensing and biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.