Abstract

SnSb/C core-shell powder has been successfully prepared by modified carbothermal reduction method. The shape, size, morphology, and electrochemical properties of the SnSb/C core-shell powder have been investigated. SnSb particles are completely encapsulated by amorphous carbon shell, and the surface of SnSb/C composite has been characterized with porous structure. The composite has a relatively high BET surface area of 253 m2g−1. The composite exhibits relatively good capacity retention for 50 cycles at a constant current density of 100 mA g−1 and show excellent rate performance when the current ranges from 50 to 200 mA g−1. The improvement of reversible capacity and cyclic performance is attributed to loose and amorphous surface structure which could buffer volume variations through cycle process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.